

Processes without causal order as a model of computation

Ämin Baumeler with Stefan Wolf Università della Svizzera italiana, Lugano, Switzerland

December 11, 2015 — Workshop on Quantum Nonlocality, Causal Structures and Device-Independent Quantum Information, National Cheng Kung University, Tainan, Taiwan

Outline

✤ **Motivation**

- ✤ Classical correlations without causal order
- ✤ Circuit model without causal order
- ✤ Examples
- ✤ Conclusion

Motivation

General relativity } Quantum physics Quantum gravity

Motivation

General relativity: *dynamic* spacetime and *deterministic*

Quantum physics: *fixed* spacetime and *probabilistic*

✤ Quantum gravity: *probabilistic* theory with a *dynamic* spacetime?1

1 L. Hardy, arXiv:0509120 [gr-qc] (2005).

Motivation

✤ Replace *background time* with weaker assumption of *logical consistency*.

- ✤ What correlations are possible in a world *without background time?*
- ✤ What computations are possible in world *without background time*?

Correlations without predefined causal order

✤ Work is mainly based on the framework by Oreshkov, Costa, and Brukner.¹

1 *O. Oreshkov, F. Costa, Č. Brukner, Nat. Commun. 3, 1092 (2012).*

Correlations without predefined causal order

✤ Correlations that arise when we drop *background time* and assume *local validity* of a theory, *local time*, and *logical consistency* only.

unique fixed point

Classical correlations without causal order

✤ Operational approach: Parties: A, B, C (isolated)

Classical correlations without causal order

✤ Operational approach: Parties: A, B, C (isolated)

✤ Local time:

A first receives random variable *IA*, then sends random variable O_A (equivalently for B and C).

Classical correlations without causal

✤ Local time:

A first receives random variable *IA*, then sends random variable O_A (equivalently for B and C).

Classical correlations without causal order

✤ Operational approach: Parties: A, B, C (isolated)

✤ Local time:

A first receives random variable *IA*, then sends random variable O_A (equivalently for B and C).

✤ Local validity of probability theory: A'soperation is a conditional probability distribution $A = P_{O_A|I_A}$ (equivalently for B and C).

Classical correlations without causal order

✤ Operational approach: Probability P_{O.I} is *linear* in the choice of operations of A, B, and C.

$$
\bullet \; \bm{o} = (o_A, o_B, o_C), \quad \bm{i} = (i_A, i_B, i_C)
$$

 $\mathbf{P}(\mathbf{o}, \mathbf{i}) = e(\mathbf{o}, \mathbf{i}) P(o_A | i_A) P(o_B | i_B) P(o_C | i_C)$

 ← Condition: \forall **o**, $i: e(o, i) \ge 0$

Classical correlations without causal order

 $\sqrt{2}$

$$
\begin{array}{ll}\n\ast \quad \text{Let } P(o_A|i_A) = \delta_{0,o_A}, \\
P(o_B|i_B) = \delta_{0,o_B}, \\
P(o_C|i_C) = \delta_{0,o_C} & I_A\n\end{array} \quad\n\begin{array}{ll}\n\text{B} & 0 & 0 \\
\text{C} & 0 & 0 \\
\text{D} & 0 & 0 & 0 \\
\text{D} & 0 & 0 & 0 & 0 \\
\text{E} & 0 & 0 & 0 & 0 & 0 \\
\text{E} & 0 & \phantom{\times
$$

* $P(o, i) = e(o, i)P(o_A|i_A)P(o_B|i_B)P(o_C|i_C)$

$$
\sum_{\mathbf{o}, \mathbf{i}} P(\mathbf{o}, \mathbf{i}) = \sum_{\mathbf{o}, \mathbf{i}} e(\mathbf{o}, \mathbf{i}) \delta_{0, \mathbf{o}_A} \delta_{0, \mathbf{o}_B} \delta_{0, \mathbf{o}_c} = \sum_{\mathbf{i}} e(\mathbf{0}, \mathbf{i}) = 1
$$
\n
$$
\forall \mathbf{o} : \sum_{\mathbf{i}} e(\mathbf{o}, \mathbf{i}) = 1 \quad \text{: Conditional probability}
$$
\n
$$
\text{distribution } E = P(\mathbf{i} | \mathbf{o}) = e(\mathbf{o}, \mathbf{i})
$$

Classical correlations without causal order

$$
\begin{aligned} \text{Let } P(o_A | i_A) &= \delta_{0, o_A}, \\ P(o_B | i_B) &= \delta_{0, o_B}, \\ P(o_C | i_C) &= \delta_{0, o_C} \end{aligned}
$$

 \mathbf{v} | \mathbf{v} |

* $P(o, i) = e(o, i)P(o_A|i_A)P(o_B|i_B)P(o_C|i_C)$

$$
\sum_{\mathbf{o}, \mathbf{i}} P(\mathbf{o}, \mathbf{i}) = \sum_{\mathbf{o}, \mathbf{i}} e(\mathbf{o}, \mathbf{i}) \delta_{0, \mathbf{o}, \mathbf{a}} \delta_{0, \mathbf{o}, \mathbf{b}} \delta_{0, \mathbf{o}, \mathbf{c}} = \sum_{\mathbf{i}} e(\mathbf{0}, \mathbf{i}) = 1
$$

\n
$$
\forall \mathbf{o} : \sum_{\mathbf{i}} e(\mathbf{o}, \mathbf{i}) = 1 \quad \text{: Conditional probability} \quad \text{distribution } E = P(\mathbf{i} | \mathbf{o}) = e(\mathbf{o}, \mathbf{i})
$$

✤ Channel from A to A. Not allowed!

Logical consistency

✤ Logical consistency: For every choice of $P(o_A|i_A), P(o_B|i_B), P(o_C|i_C)$:

$$
\sum_{o,i} P(i|o) P(o_A|i_A) P(o_B|i_B) P(o_C|i_C) = 1
$$

A

B

 O_A $\uparrow O_B$ $\uparrow O_C$

 I_A I_B I_C

C

E

C

B

A

Logical consistency

• Formulation of $\sum P(i|\mathbf{o})P(o_A|i_A)P(o_B|i_B)P(o_C|i_C) = 1$ $\boldsymbol{o}.\boldsymbol{i}$

with stochastic matrices.

• Define the stochastic matrices $\hat{E}, \hat{A}, \hat{B}, \hat{C}$ as $\vec{i}^T \hat{E} \vec{o} = P(i|o)$ $\vec{\sigma}_A^T \hat{A} \vec{i}_A = P(o_A|i_A)$ with
 $\vec{\sigma}_B^T \hat{C} \vec{i}_B = P(o_B|i_B)$ $\vec{o} = \vec{o}_A \otimes \vec{o}_B \otimes \vec{o}_C$ $\vec{i} = \vec{i}_A \otimes \vec{i}_B \otimes \vec{i}_C$ $\vec{o}_C^T \hat{Bi}_C = P(o_C|i_C)$

Logical consistency

8

$$
\sum_{o,i} P(i|o) P(o_A|i_A) P(o_B|i_B) P(o_C|i_C)
$$
\n
$$
= \sum_{o,i} (\vec{i}^T \hat{E} \vec{o}) (\vec{o}_A^T \hat{A} \vec{i}_A) (\vec{o}_B^T \hat{C} \vec{i}_B) (\vec{o}_C^T \hat{B} \vec{i}_C)
$$
\n
$$
= \sum_{o,i} (\vec{i}^T \hat{E} \vec{o}) (\vec{o}_A^T (\hat{A} \otimes \hat{B} \otimes \hat{C}) \vec{i})
$$
\n
$$
= \text{Tr} (\hat{E} (\hat{A} \otimes \hat{B} \otimes \hat{C})) = 1
$$

Unique fixed point

Set of deterministic local operations

 \dot{i}'

0

 $\overline{\mathbf{0}}$ \cdot

✤ Logical consistency:

Assume \hat{E} is deterministic (only 0's and 1's). Diagonal of *M* has a single 1.

M

 $\overline{0}$

 $\ddot{}$

 $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

 $\overline{}$

✤ For every choice of operations: unique fixed point

Unique fixed point

* Logical consistency:
 $\forall \hat{A}, \hat{B}, \hat{C} \in \mathcal{D}$: Tr $(\hat{E}(\hat{A} \otimes \hat{B} \otimes \hat{C})) = 1$

* Assume \hat{E} is not deterministic.

$$
\hat{E} = \sum_i p(i)\hat{E}_i \quad \text{with } \hat{E}_i \in \mathcal{D}
$$

For every choice of operations:

 $\sum p(i)$ (#fixed points with \hat{E}_i) = 1

Unique fixed point

✤ Example (binary channels):

Outline

- ✤ Motivation
- ✤ Classical correlations without causal order
- ✤ **Circuit model without causal order** (arXiv:1511.05444)
- ✤ Examples
- ✤ Conclusion

- ✤ Can we use this property to *find* fixed points? Before: Model of computation:
	- ✤ Parties
	- ✤ Order not fixed
	- ✤ Logical consistency: $\forall \hat{A}, \hat{B}, \hat{C}$ unique F.P.
-
- **Gates**
- ✤ Arbitrary wiring
- ✤ Logical consistency: for every input: loops in circuit have unique F.P.

✤ Arbitrary wiring of gates

✤ Logical consistency: unique fixed point on loops for every input

✤ Arbitrary wiring of gates

✤ Logical consistency: unique fixed point on loops for every input

✤ Arbitrary wiring of gates

✤ Logical consistency: unique fixed point on loops for every input

✤ Not all wirings are logically consistent Example: Grandfathers paradox

ID *0 0*

1 1

#fixed-points: 0

Example: Causal paradox

#fixed-points: 2

Outline

- ✤ Motivation
- ✤ Classical correlations without causal order
- ✤ Circuit model without causal order
- ✤ **Examples**
- ✤ Conclusion

Example: Fixed point search

✤ Given a black box **B**.

Promise: **B** has *exactly one* fixed point.

$$
\hat{B} = \sum_{i=1}^{N} \vec{e_i} \vec{i}^T, \quad \text{with } |\{\vec{i}|\vec{i} = \vec{e_i}\}| = 1
$$

What is the query complexity to find the fixed point $(\vec{i} = \vec{e}_i)$?

✤ Worst case: *N-1*

Example: Fixed point search

✤ Circuit without causal order:

✤ Logically consistent: fixed point is unique

Example: Fixed point search

✤ Read out fixed point

Example: Finding solution to problem in NP with a unique solution

- ✤ Let V be a poly-time verifier for a problem Q and we are guaranteed that Q has a unique solution x.
- ✤ We can find x in a polynomial number of steps.

✤ V checks x, if x is the solution, then output x else output x+1

Conclusion

- ✤ Logical consistency is a weaker assumption than global time.
- ✤ More general correlations (also classically).
- ✤ More powerful circuit model.

Thank you.

