

Processes without causal order as a model of computation

Ämin Baumeler with Stefan Wolf Università della Svizzera italiana, Lugano, Switzerland

December 11, 2015 — Workshop on Quantum Nonlocality, Causal Structures and Device-Independent Quantum Information, National Cheng Kung University, Tainan, Taiwan

Outline

Motivation

- Classical correlations without causal order
- Circuit model without causal order
- Examples
- Conclusion

Motivation

General relativity Quantum physics

Quantum gravity

Motivation

General relativity: *dynamic* spacetime and *deterministic*

Quantum physics: *fixed* spacetime and *probabilistic*

Quantum gravity: probabilistic theory with a dynamic spacetime?¹

¹ L. Hardy, arXiv:0509120 [gr-qc] (2005).

Motivation

 Replace background time with weaker assumption of logical consistency.

- What <u>correlations</u> are possible in a world without background time?
- What <u>computations</u> are possible in world without background time?

Correlations without predefined causal order

 Work is mainly based on the Oreshkov, Costa, and Brukner.¹

framework by

¹ O. Oreshkov, F. Costa, Č. Brukner, Nat. Commun. **3**, 1092 (2012).

Correlations without predefined causal order

Correlations that arise when we drop background time and assume local validity of a theory, local time, and logical consistency only.

unique fixed point

Operational approach:
 Parties: A, B, C (isolated)

Operational approach:
 Parties: A, B, C (isolated)

Local time:

A first receives random variable I_A , then sends random variable O_A (equivalently for B and C).

Local time:

A first receives random variable I_A , then sends random variable O_A (equivalently for B and C).

Operational approach:
 Parties: A, B, C (isolated)

Local time:

A first receives random variable I_A , then sends random variable O_A (equivalently for B and C).

Local validity of probability theory:
A's operation is a conditional probability distribution $A = P_{O_A | I_A}$ (equivalently for B and C).

Operational approach:
 Probability P_{O,I} is *linear* in the choice of operations of A, B, and C.

•
$$o = (o_A, o_B, o_C), \quad i = (i_A, i_B, i_C)$$

 $P(\boldsymbol{o}, \boldsymbol{i}) = e(\boldsymbol{o}, \boldsymbol{i}) P(o_A | i_A) P(o_B | i_B) P(o_C | i_C)$

• Condition: $\forall o, i : e(o, i) \ge 0$

 * Let
$$P(o_A|i_A) = \delta_{0,o_A}$$
,
 $P(o_B|i_B) = \delta_{0,o_B}$,
 $P(o_C|i_C) = \delta_{0,o_C}$

A A B B C C C C C C C

 $\bullet P(\boldsymbol{o}, \boldsymbol{i}) = e(\boldsymbol{o}, \boldsymbol{i}) P(o_A | i_A) P(o_B | i_B) P(o_C | i_C)$

*
$$\sum_{o,i} P(o,i) = \sum_{o,i} e(o,i) \delta_{0,o_A} \delta_{0,o_B} \delta_{0,o_c} = \sum_{i} e(0,i) = 1$$

* $\forall o : \sum_{i} e(o,i) = 1$: Conditional probability
distribution $E = P(i|o) = e(o,i)$

• Let
$$P(o_A|i_A) = \delta_{0,o_A},$$

 $P(o_B|i_B) = \delta_{0,o_B},$
 $P(o_C|i_C) = \delta_{0,o_C}$

 $\bullet P(\boldsymbol{o}, \boldsymbol{i}) = e(\boldsymbol{o}, \boldsymbol{i}) P(o_A | i_A) P(o_B | i_B) P(o_C | i_C)$

*
$$\sum_{o,i} P(o,i) = \sum_{o,i} e(o,i) \delta_{0,o_A} \delta_{0,o_B} \delta_{0,o_c} = \sum_{i} e(0,i) = 1$$

* $\forall o : \sum_{i} e(o,i) = 1$: Conditional probability
distribution $E = P(i|o) = e(o,i)$

Channel from A to A. Not allowed!

Logical consistency

 ★ Logical consistency: For every choice of
 P(o_A|i_A), P(o_B|i_B), P(o_C|i_C) :

$$\sum_{\boldsymbol{o},\boldsymbol{i}} P(\boldsymbol{i}|\boldsymbol{o}) P(o_A|i_A) P(o_B|i_B) P(o_C|i_C) = 1$$

 O_A

A

A

 I_A

В

В

 I_{B}

 O_B

 O_C

E

C

Logical consistency

• Formulation of $\sum_{\boldsymbol{o},\boldsymbol{i}} P(\boldsymbol{i}|\boldsymbol{o})P(o_A|i_A)P(o_B|i_B)P(o_C|i_C) = 1$

with stochastic matrices.

★ Define the stochastic matrices \hat{E} , \hat{A} , \hat{B} , \hat{C} as $\vec{i}^T \hat{E} \vec{o} = P(i|o)$ $\vec{o}^T_A \hat{i}_A = P(o_A|i_A) \quad \text{with} \quad \vec{o} = \vec{o}_A \otimes \vec{o}_B \otimes \vec{o}_C$ $\vec{o}^T_B \hat{C} \vec{i}_B = P(o_B|i_B) \quad \vec{i} = \vec{i}_A \otimes \vec{i}_B \otimes \vec{i}_C$ $\vec{o}^T_C \hat{B} \vec{i}_C = P(o_C|i_C)$

Logical consistency

•

$$\begin{split} &\sum_{\boldsymbol{o},\boldsymbol{i}} P(\boldsymbol{i}|\boldsymbol{o}) P(\boldsymbol{o}_A|\boldsymbol{i}_A) P(\boldsymbol{o}_B|\boldsymbol{i}_B) P(\boldsymbol{o}_C|\boldsymbol{i}_C) \\ &= \sum_{\boldsymbol{o},\boldsymbol{i}} \left(\boldsymbol{i}^T \hat{E} \boldsymbol{\vec{o}} \right) \left(\boldsymbol{\vec{o}}_A^T \hat{A} \boldsymbol{\vec{i}}_A \right) \left(\boldsymbol{\vec{o}}_B^T \hat{C} \boldsymbol{\vec{i}}_B \right) \left(\boldsymbol{\vec{o}}_C^T \hat{B} \boldsymbol{\vec{i}}_C \right) \\ &= \sum_{\boldsymbol{\vec{o}},\boldsymbol{\vec{i}}} \left(\boldsymbol{\vec{i}}^T \hat{E} \boldsymbol{\vec{o}} \right) \left(\boldsymbol{\vec{o}}^T (\hat{A} \otimes \hat{B} \otimes \hat{C}) \boldsymbol{\vec{i}} \right) \\ &= \operatorname{Tr} \left(\hat{E} (\hat{A} \otimes \hat{B} \otimes \hat{C}) \right) = 1 \end{split}$$

Unique fixed point

Set of deterministic local operations

;1

* Logical consistency: $\forall \hat{A}, \hat{B}, \hat{C} \in \mathcal{D} : \operatorname{Tr}\left(\hat{E}(\hat{A} \otimes \hat{B} \otimes \hat{C})\right) = 1$

* Assume \hat{E} is deterministic (only 0's and 1's). Diagonal of *M* has a single 1.

M

 For every choice of operations: unique fixed point

Unique fixed point

* Logical consistency: $\forall \hat{A}, \hat{B}, \hat{C} \in \mathcal{D} : \operatorname{Tr} \left(\hat{E}(\hat{A} \otimes \hat{B} \otimes \hat{C}) \right) = 1$

* Assume \hat{E} is not deterministic.

$$\hat{E} = \sum_{i} p(i)\hat{E}_{i}$$
 with $\hat{E}_{i} \in \mathcal{D}$

For every choice of operations:

 $\sum_{i} p(i) (\# \text{fixed points with } \hat{E}_i) = 1$

Unique fixed point

Example (binary channels):

Outline

- Motivation
- Classical correlations without causal order
- Circuit model without causal order (arXiv:1511.05444)
- Examples
- Conclusion

- Can we use this property to *find* fixed points?
 <u>Before:</u> <u>Model of computation:</u>
 - Parties
 - Order not fixed
 - * Logical consistency: $\forall \hat{A}, \hat{B}, \hat{C}$ unique F.P.

- <u>model of computatio</u>
- Gates
- Arbitrary wiring
- Logical consistency: for every input: loops in circuit have unique F.P.

Arbitrary wiring of gates

 Logical consistency: unique fixed point on loops for every input

Arbitrary wiring of gates

 Logical consistency: unique fixed point on loops for every input

Arbitrary wiring of gates

 Logical consistency: unique fixed point on loops for every input

 Not all wirings are logically consistent Example: Grandfathers paradox

ID

0

1

#fixed-points: 0

Example: Causal paradox

#fixed-points: 2

Outline

- Motivation
- Classical correlations without causal order
- Circuit model without causal order
- * Examples
- Conclusion

Example: Fixed point search

✤ Given a black box B.

Promise: **B** has *exactly one* fixed point.

$$\hat{B} = \sum_{i=1}^{N} \vec{e_i} \vec{i}^T$$
, with $|\{\vec{i}|\vec{i} = \vec{e_i}\}| = 1$

What is the query complexity to find the fixed point $(\vec{i} = \vec{e_i})$?

✤ Worst case: N-1

Example: Fixed point search

Circuit without causal order:

Logically consistent: fixed point is unique

Example: Fixed point search

Read out fixed point

Example: Finding solution to problem in NP with a unique solution

- Let V be a poly-time verifier for a problem Q and we are guaranteed that Q has a unique solution x.
- We can find x in a polynomial number of steps.

V checks x,
 if x is the solution,
 then output x
 else output x+1

Conclusion

- Logical consistency is a weaker assumption than global time.
- More general correlations (also classically).
- More powerful circuit model.

Thank you.

