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Motivations for Relaxing 
Causality

(1) Quantum theory 
Quantum superpositions  
Bell correlations 

(2) Relativity theory 
Closed time-like curves (CTCs) 
e.g., Lanczos (1924), Gödel (1949), Thorne (1988)  

(3) Quantum gravity 
GR: dynamic causal structure & deterministic  
QT: fixed causal structure & probabilistic

L. Hardy, arXiv:0509120 [gr-qc] (2005);  
Images: A. Albrecht, Nature 412, 687 (2011); A. Jaffe, Nature 537, 616 (2016); A. Ashtekar, Nature Physics 2, 725 (2006)
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causality: assumptions, 
relaxations, and potential 

problems
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Causal Structures
• Cause-effect relations 

When I click on this little button (cause) you will see 
the next slide (effect) 

• Relativity theory: light-cone structure*  

• Modeled as directed acyclic graph 
 

* with postulated arrow of time



• Traditionally: definite partial ordering of events  
Based on intuition, observations; we are used to that 

• Partial ordering: no causal loops  
An effect cannot be the cause of the effect’s cause (antisymmetric) 
 
 
 

• Definite: predetermined, independent of observer  
Fixed causal relations, e.g., no quantum superpositions

X
X



Relaxing Causality
• Drop assumption: definite partial ordering of events 

• Keep: 
- Local assumptions  
  In accordance with local observations 
 
- Logical consistency  



enter the world of the  
non-causal 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Antinomies
• Grandfather antinomy  

Overdetermination  
An effect suppresses its own cause 
 
 

• Information antinomy  
Underdetermination 
Multiple effects confirm their own causes, yet the theory fails to 
predict with what probability which cause-effect pair will take 
place



Grandfather Antinomy
• Travel to the past and prevent the younger self from 

traveling to the past  
 

• Overdetermination (contradiction):  
x=f(a), 
a=g(x), 
no pair a,x satisfies both equations



Information Antinomy  
Also known as Bootstrap Antinomy

• One morning you find a book on your table, publish 
it, win the Fields Medal, then you travel back in time 
to place the book on the table.  
This is creationism. 

• Underdetermination:  
x=f’(a) 
a=g’(x) 
multiple pairs a,x satisfy both equations

D. Deutsch, Physical Review D 44, 3197 (1991)



classical (as opposed to quantum)  
non-causal correlations
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Process-Matrix Framework

• Drop assumption: definite partial ordering of events  
 
- Local assumptions only  
  In accordance with local observations 
 
- Logical consistency

O. Oreshkov, F. Costa, Č. Brukner, Nature Communications 3, 1092 (2012)



Classical Non-Causal Correlations  
Assumptions

(1) Parties interact with random variables (not quantum)  
Each party interacts once  
A party is described by a stochastic operation  

(2) Parties are isolated  
Multiple parties: set of stochastic operations  

(3) Logical consistency  
Probabilities are linear in the choice of operation

Ä. B., S. Wolf, New Journal of Physics 18, 013036 (2016)



• Parties interact with random variables (as opposed to 
quantum systems)  
A party is described by a stochastic operation

Setting

Result
Random variables 
exchanged with the 
environment

Ä. B., S. Wolf, New Journal of Physics 18, 013036 (2016)

Classical Non-Causal Correlations  
Assumptions



• Parties are isolated  
Multiple parties: set of stochastic operations

Alice 
      A 
      X

I1

O1

Bob 
      B 
      Y

I2

O2

Charlie       
      C 
      Z

I3

O3

{PX,O1|A,I1| {z }
L1

, PY,O2|B,I2| {z }
L2

, PZ,O3|C,I3| {z }
L3

, . . . }

Ä. B., S. Wolf, New Journal of Physics 18, 013036 (2016)

Classical Non-Causal Correlations  
Assumptions



• Logical consistency  
Probabilities are linear in the choice of local operations

Linear in choice of 
local operations

Local operations (stochastic)

PX,Y ,Z,···|A,B,C,... = f(L1, L2, L3, . . . )

Ä. B., S. Wolf, New Journal of Physics 18, 013036 (2016)

Classical Non-Causal Correlations  
Assumptions



PX,Y ,Z|A,B,C =
X

i1,i2,i3
o1,o2,o3

PX,O1|A,I1PY ,O2|B,I2PZ,O3|B,I3 PI1,I2,I3|O1,O2,O3| {z }
E

with some restrictions
Ä. B., S. Wolf, New Journal of Physics 18, 013036 (2016)

Classical Non-Causal Correlations  
Theorem



• Shared State:

Alice       
      A 
      X

Bob       
      B 
      Y

Examples

PI1,I2



• Channel:

Alice       
      A 
      X

Bob       
      B 
      Y

Examples

PI1



XAlice       
      A 
      X

O. Oreshkov, F. Costa, Č. Brukner, Nature Communications 3, 1092 (2012)

Classical Non-Causal 
Correlations



Alice       
      A 
      X

Bob       
      B 
      YX

O. Oreshkov, F. Costa, Č. Brukner, Nature Communications 3, 1092 (2012)

Classical Non-Causal 
Correlations



Classical Non-Causal Correlations  
What else is possible?

PX,Y ,Z|A,B,C =
X

i1,i2,i3
o1,o2,o3

PX,O1|A,I1PY ,O2|B,I2PZ,O3|B,I3 PI1,I2,I3|O1,O2,O3| {z }
E

with some restrictions



violation of causal 
inequalities
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Causal Correlations
• Correlations among parties 

• Definition (Causal Correlations):  
Correlations obtainable from a predefined partial 
ordering of the parties  

• For two parties: or or

Alice       
      A 
      X

Bob       
      B 
      Y

O. Oreshkov, F. Costa, Č. Brukner, Nature Communications 3, 1092 (2012)



Causal Correlations
• Correlations among parties 

• Definition (Causal Correlations):  
Correlations obtainable from a predefined partial 
ordering of the parties  

• For two parties: or or

Alice       
      A 
      X

Bob       
      B 
      Y

O. Oreshkov, F. Costa, Č. Brukner, Nature Communications 3, 1092 (2012)



Causal Inequalities
• Inequalities satisfied by all causal correlations 

• Example:

O. Oreshkov, F. Costa, Č. Brukner, Nature Communications 3, 1092 (2012)

Bob before Alice
Alice before Bob

Alice       
      A 
      X

Bob       
         B, B’ 

    Y



Causal Inequalities

causal  
inequality

causal  
correlations

non-causal 
correlations



Causal Inequalities

causal  
inequality

causal  
correlations

classical logically consistent correlations  
= 

causal correlations?



Classical Non-Causal Correlations  
Non-Causal Environment

Ä. B., A. Feix, S. Wolf, Physical Review A 90, 042106 (2014)

Causal:
no other 

party

Alice 
        A, M 

      X

Bob 
        B, M 

      Y

Charlie       
         C, M 

      Z

1

3
(Pr(X = B � C | M = 1) + Pr(Y = A� C | M = 2) + Pr(Z = A�B | M = 3))  5

6



Ä. B., A. Feix, S. Wolf, Physical Review A 90, 042106 (2014)

Alice 
        A, M 

      X

Bob 
        B, M 

      Y

Charlie       
         C, M 

      Z

1

3
(Pr(X = B � C | M = 1) + Pr(Y = A� C | M = 2) + Pr(Z = A�B | M = 3))  5

6

Classical Non-Causal Correlations  
Non-Causal Environment



Ä. B., A. Feix, S. Wolf, Physical Review A 90, 042106 (2014)

Alice 
        A, M 

      X

Bob 
        B, M 

      Y

Charlie       
         C, M 

      Z

1

3
(Pr(X = B � C | M = 1) + Pr(Y = A� C | M = 2) + Pr(Z = A�B | M = 3))  5

6

B B

Classical Non-Causal Correlations  
Non-Causal Environment



Ä. B., A. Feix, S. Wolf, Physical Review A 90, 042106 (2014)

Alice 
        A, M 

      X

Bob 
        B, M 

      Y

Charlie       
         C, M 

      Z

1

3
(Pr(X = B � C | M = 1) + Pr(Y = A� C | M = 2) + Pr(Z = A�B | M = 3))  5

6

B B ⊕1

Classical Non-Causal Correlations  
Non-Causal Environment



Ä. B., A. Feix, S. Wolf, Physical Review A 90, 042106 (2014)

Alice 
        A, M 

      X

Bob 
        B, M 

      Y

Charlie       
         C, M 

      Z

1

3
(Pr(X = B � C | M = 1) + Pr(Y = A� C | M = 2) + Pr(Z = A�B | M = 3))  5

6

B ⊕C B ⊕1⊕C

Classical Non-Causal Correlations  
Non-Causal Environment



Ä. B., A. Feix, S. Wolf, Physical Review A 90, 042106 (2014)

Alice 
        A, M 

      X

Bob 
        B, M 

      Y

Charlie       
         C, M 

      Z

1

3
(Pr(X = B � C | M = 1) + Pr(Y = A� C | M = 2) + Pr(Z = A�B | M = 3))  5

6

B ⊕C B ⊕C

Classical Non-Causal Correlations  
Non-Causal Environment



• Characterization with polytopes 
 
 

• Characterization with fixed-point theorems 
- No fixed point: Grandfather antinomy  
- Multiple fixed points: Information antinomy 
    
For every choice of operation:  
  => deterministic case: unique fixed point 
   => probabilistic case: average number of fixed points is 1

Classical Non-Causal Correlations  
Characterizing the environment

Ä. B., S. Wolf, New Journal of Physics 18, 013036 (2016); Ä. B., S. Wolf, New Journal of Physics 18, 035014 (2016)



• Characterization with polytopes 
 
 

• Characterization with fixed-point theorems 
- No fixed point: Grandfather antinomy  
- Multiple fixed points: Information antinomy 
    
For every choice of operation:  
  => deterministic case: unique fixed point 
   => probabilistic case: average number of fixed points is 1

Classical Non-Causal Correlations  
Characterizing the environment

Ä. B., S. Wolf, New Journal of Physics 18, 013036 (2016); Ä. B., S. Wolf, New Journal of Physics 18, 035014 (2016)



non-causal 
computation
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• Parties 

• Order not fixed 

• Logical consistency:  
                unique F.P.

Non-Causal Computation

Before: Model of computation:

• Gates (deterministic) 

• Arbitrary wiring 

• Logical consistency:  
for every input: loops in 
circuit have unique F.P.

8L1, L2, L3



• Arbitrary wiring of gates

Non-Causal Computation

F H
G

• Logical consistency:  
Unique fixed point on looping wires



• Not all wirings are logically consistent

Non-Causal Computation

NOT
0 1
1 0

ID
0 0
1 1

#fixed-points: 0

#fixed-points: 2



• Language: 

• Instance:  
Question:            ? 

• Definition (NCCAlgo): 
A deterministic NCCAlgo A is a polytime algorithm that takes as  
input x and outputs a Boolean circuit cx over AND, OR, NOT such 
that: 
 
 
If y=1z: A accepts x, otherwise A rejects x. 
A decides L if it accepts every x in L and rejects every other x

Non-Causal Computation

x 2 L

x 2 {0, 1}⇤

L ✓ {0, 1}⇤

Ä.B., S. Wolf, Entropy 19, 326 (2017); Ä. B., S. Wolf, Proc. Royal Soc. A 474, 20170698 (2018)



• Definition (NCCAlgo):  
A deterministic NCCAlgo A is a polytime algorithm that takes as  
input x and outputs a Boolean circuit cx over AND, OR, NOT such 
that: 
 
 
If y=1z: A accepts x, otherwise A rejects x. 
A decides L if it accepts every x in L and rejects every other x 

• Definition (PNCC): 
The class PNCC contains all languages decidable by some 
NCCAlgo A.

Non-Causal Computation

Ä.B., S. Wolf, Entropy 19, 326 (2017); Ä. B., S. Wolf, Proc. Royal Soc. A 474, 20170698 (2018)



• Definition (PNCC): 
The class PNCC contains all languages decidable by some 
NCCAlgo A. 

• Definition (UP ∩ coUP): 
The class UP ∩ coUP contains all languages L for which there 
exist two polytime verifiers  
    Vyes: {0,1}* x {0,1}* —> {0,1} 
    Vno:  {0,1}* x {0,1}* —> {0,1} 
such that:

x 2 L =) 9!y : V
yes

(x, y) = 1 ^ 8y : V
no

(x, y) = 0

x 62 L =) 8y : V
yes

(x, y) = 0 ^ 9!y : V
no

(x, y) = 1

Non-Causal Computation

L.G. Valiant, Inf. Proc. Lett. 5, 20 (1976);  
Ä.B., S. Wolf, Entropy 19, 326 (2017); Ä. B., S. Wolf, Proc. Royal Soc. A 474, 20170698 (2018)



• Definition (PNCC): 
The class PNCC contains all languages decidable by some 
NCCAlgo A. 

• Definition (UP ∩ coUP): 
The class UP ∩ coUP contains all languages L for which there 
exist two polytime verifiers  
    Vyes: {0,1}* x {0,1}* —> {0,1} 
    Vno:  {0,1}* x {0,1}* —> {0,1} 
such that:

x 2 L =) 9!y : V
yes

(x, y) = 1 ^ 8y : V
no

(x, y) = 0

x 62 L =) 8y : V
yes

(x, y) = 0 ^ 9!y : V
no

(x, y) = 1

Non-Causal Computation

UP coUP
L.G. Valiant, Inf. Proc. Lett. 5, 20 (1976);  

Ä.B., S. Wolf, Entropy 19, 326 (2017); Ä. B., S. Wolf, Proc. Royal Soc. A 474, 20170698 (2018)



• Theorem: PNCC = UP ∩ coUP 

• Proof sketch:  
⊆: We can translate a Circuit cx into the verifiers:  
 
 
 
⊇: We can construct cx from the verifiers:

Non-Causal Computation

Ä. B., S. Wolf, Proc. Royal Soc. A 474, 20170698 (2018)



Known problems in UP ∩ coUP: Factorization

Deutsch CTC

Postselection CTC

Our model
coUP

coNP

UP

NP

PostBPP

PostBQP

PSPACE

P

Non-Causal Computation

Ä. B., S. Wolf, Proc. Royal Soc. A 474, 20170698 (2018)



time travel
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Time Travel

Logically problematic?
- Grandfather antinomy  
- Information antinomy

Physically problematic?
- Reversibility of deterministic laws 

- No new physics

Computationally problematic?
- NP-Hardness assumption



Time Travel 
(previous works)

• Assumptions:  
Novikov’s principle of self-consistency  
(no grandfather antinomy)  
 
No „new physics“ at the surface P 
 

J. Friedman, M. Morris, I. Novikov, F. Echeverria, G. Klinkhammer, K. Thorne, U. Yurtsever, Physical Review D 42, 1915 (1990); 
F. Echeverria, G. Klinkhammer, K. Thorne, Physical Review D 44, 1077 (1991); 

K. Thorne, Black Holes and Time Warps (W. W. Norton & Company, New York, 1994)



Time Travel 
(previous works)

• Assumptions:  
Novikov’s principle of self-consistency  
(no grandfather antinomy)  
 
No „new physics“ in the past 
 

• Implications:

J. Friedman, M. Morris, I. Novikov, F. Echeverria, G. Klinkhammer, K. Thorne, U. Yurtsever, Physical Review D 42, 1915 (1990); 
F. Echeverria, G. Klinkhammer, K. Thorne, Physical Review D 44, 1077 (1991); 

K. Thorne, Black Holes and Time Warps (W. W. Norton & Company, New York, 1994)



Time Travel
• Assumptions:  

Novikov’s principle of self-consistency  
(no grandfather antinomy)  
 
No „new physics“ in local regions  
(not only at P) 

• Implications:  
Unique dynamics, reversibility, computationally 
tame

Ä. B., F. Costa, T. Ralph, S. Wolf, M. Zych, arXiv:1703.00779 [gr-qc] (2017)



Time Travel
• Local region R consists of past and future 

boundary 

• Dynamics within R is described by a function fR 
 
 

• No new physics: Any function fR can be applied.  

Ä. B., F. Costa, T. Ralph, S. Wolf, M. Zych, arXiv:1703.00779 [gr-qc] (2017)



Time Travel
• Multiple regions R,S,T  
 
 

• Closed time-like curve as function

Ä. B., F. Costa, T. Ralph, S. Wolf, M. Zych, arXiv:1703.00779 [gr-qc] (2017)



Time Travel
• Closed time-like curve

Ä. B., F. Costa, T. Ralph, S. Wolf, M. Zych, arXiv:1703.00779 [gr-qc] (2017)



Time Travel
• Novikov’s self-consistency principle and  

strong „no new physics“ principle

Ä. B., F. Costa, T. Ralph, S. Wolf, M. Zych, arXiv:1703.00779 [gr-qc] (2017)



Time Travel
• Novikov’s self-consistency principle and  

strong „no new physics“ principle 
 
 
 

• This implies (unique dynamics, no information antinomy):

Ä. B., F. Costa, T. Ralph, S. Wolf, M. Zych, arXiv:1703.00779 [gr-qc] (2017)



Time Travel
• Proof idea for: 
 
 
 
 
N=1: Trivial  
Induction: N -> N+1: 
   Assume w for N+1 regions has more than one fixed point. 
   Construct w’ for N regions with more than one fixed point.

Ä. B., F. Costa, T. Ralph, S. Wolf, M. Zych, arXiv:1703.00779 [gr-qc] (2017)



Time Travel
• Novikov’s self-consistency principle and  

strong „no new physics“ principle 
 
 

• Every w that satisfies the fixed-point  
condition can be embedded in a  
reversible w’  with two additional  
local regions fR fS fT

a

b

c

x

y

z

a, b, c

e0, e1, e2

Ä. B., F. Costa, T. Ralph, S. Wolf, M. Zych, arXiv:1703.00779 [gr-qc] (2017)



Time Travel: Example

Ä. B., F. Costa, T. Ralph, S. Wolf, M. Zych, arXiv:1703.00779 [gr-qc] (2017)



Time Travel

Logically problematic?
- Grandfather antinomy  
- Information antinomy

Physically problematic?
- Reversibility of deterministic laws 

- No new physics

Computationally problematic?
- NP-Hardness assumption



Conclusion 
take home message

The logically consistent, classical world outside of the 
causal is 

• non empty 

• computationally tame  
(in the deterministic case; cannot efficiently solve NP-hard 
problems) 

• reversible with unique dynamics  
(in the deterministic case)



thank you
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