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OUTLINE

➤ Prelude: 
On causality and the process-matrix framework 

➤ Motivation: 
What we want to do and why: Find fixed points 

➤ Intermezzo and Intermezzo2: 
The classical case and computational complexity 

➤ Preliminary results: 
Recursive quantum fixed points 

➤ Finale:  
Challenges 



ON CAUSALITY

➤ Cause-effect relations 
 
 
 

➤ Traditional assumptions 
a) No cycles 
 
b) „fixed“
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MOTIVATIONS TO RELAX THESE ASSUMPTIONS

➤ Technical interest; 
Why not?! 

➤ Cultural-philosophical reasons 
Parmenides, etc. 

➤ General relativity 
Einstein, Lanczos, Gödel, Thorne, 
etc. 

➤ Quantum theory 
(superposition principle) 

➤ Overcome conceptual challenges of quantum theory? 
E.g., Parisian zig-zag model



THE PROCESS-MATRIX FRAMEWORK

➤ Assumptions 
i) Isolated parties with 
    single interaction 
 
ii) For every choice of quantum 
      instruments S1, S2,  
      probabilities P(x1,x2|a1,a2) 
     well defined. 
 
iii) Probabilities are linear  
       in the choice of instruments. 
 

 
 

O. Oreshkov, F. Costa, Č. Brukner, Nat. Commun. 3, 1092 (2012).
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The process matrix is 
a quantum channel!



CAUSAL INEQUALITIES

➤ Device independent 

➤ Describe the facets of the correlations obtainable in a causal 
way. 

➤ Example:  

➤ The process-matrix framework allows for violations of such 
inequalities! 

➤ Gretchenfrage: Can we realize such violations?! 
Ognyan: with space non-local variables.

 
 

O. Oreshkov, F. Costa, Č. Brukner, Nat. Commun. 3, 1092 (2012).



CAUSAL INEQUALITIES

➤ Gretchenfrage: Can we realize violations?! 

➤ Are they „just“ a mathematical artifact? 
(similar to the Gretchenfrage on the existence/realizability of closed time-like curves) 

➤ If it’s a mathematical artifact, we better find reasons for that! 

➤ One approach (that failed yet remains actual): 
Restrict the framework to purifiable process matrices. 
 
Implication: Necessity of „source“ P and „sink“ F

 
 

M. Araújo, A. Feix, M. Navascués, Č. Brukner, Quantum 1, 10 (2017).
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CONNECTION TO MATEUS’ TALK

➤ Equivalence: Process-matrix framework and linear 
postselected closed time-like curves: 
 
 
 
 
 
 

➤ Induced operations from P to F: 
P-CTC: Tr1,2[(A⨂B⨂I)U]/z (fragile) 

Process matrices: ∀A,B unitary: Tr1,2[(A⨂B⨂I)U] unitary
 
 

M. Araújo, P. Allard Guérin, ÄB, PRA 96, 52315 (2017).
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EXAMPLES

Alice before Bob: BA Quantum switch

Violation of causal inequality

 
 

M. Araújo, P. Allard Guérin, ÄB, PRA 96, 52315 (2017).



MAIN QUESTION OF THIS TALK

➤ Can we talk about the quantum states within?  
General believe in P-CTC and two-state- 
formalism community: no. 
 
Crucial difference: linearity. 
 

➤ Motivations to pose this question: 
- Technical challenge; CTCs?  
- It is possible in the classical special case 
- Might help to characterize process matrices 
- Distinguish between violating and non-violating processes? 
- Challenge Mateus’ challenge presented in his talk: 
  Limits on the computational power 



INTERMEZZO: THE CLASSICAL CASE

➤ Violations of causal inequalities is not a feature of quantum 
theory. 

➤ With three parties or more: Classical violations possible. 

➤ We know which processes are purifiable (can be made reversible) 

➤ (Caution: Superluminal signaling without logical problems!) 

➤ Characterization: 
W: A × B → A × B is a process iff 
∀ f: A →A, g: B →B ∃! (x,y): (x,y)=W(f(x),g(y)) 
  
likewise for more parties.

W
 f 

 g 

Unique fixed point for every 
choice of f,g. 

 
ÄB, S. Wolf, NJP 18, 1 (2016); ÄB, S. Wolf, NJP 18, 3 (2016)
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a,b,c ¬b⋀c, ¬c⋀a, ¬a⋀b
0,0,0 0,0,0
0,0,1 1,0,0
0,1,0 0,0,1
0,1,1 0,0,1
1,0,0 0,1,0
1,0,1 1,0,0
1,1,0 0,1,0
1,1,1 0,0,0

Three-party process (classical)



➤ Characterization: 
W: A × B × C → A × B × C is a process iff 
∀ f: A →A, g: B →B, c ∃! x,y,z: (x,y,z)=W(f(x),g(y),c) 
  
likewise for more parties. 

➤ Interpretation: 
Given the boundary conditions (W,f,g,c) states are uniquely 
determined (fixed point). 
No grandfather antinomy (no overdetermination) 
No information antinomy (no underdetermination)

INTERMEZZO: THE CLASSICAL CASE
 f 

 g 

 
 

ÄB, S. Wolf, NJP 18, 1 (2016); ÄB, S. Wolf, NJP 18, 3 (2016)



INTERMEZZO2: THE CLASSICAL CASE AND COMPUTATION

➤ Helpful to upper bound the computational 
power of classical deterministic processes to 
UP ⋂ coUP. 
 
 

➤ Problems in UP ⋂ coUP:  
- factoring  
- discrete log  
- parity games (quantum algorithm?)

 
 

ÄB, S. Wolf, PRSA 474, 2209 (2018)
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BACK TO THE QUANTUM CASE

➤ Is there a unique quantum fixed point 
for every choice of Uf, Ug unitary and input (state at P)?  
 
 
 
 

 Uf 

 Ug 



BACK TO THE QUANTUM CASE

➤ Observations: 
 
- Fixed points — if they exist — would be entangled with the 
  input on P. 
  (for different inputs there might be different fixed points) 
 
 
- The process W might entangle the 
   input on P with the rest!   Uf 

 Ug 



➤ Make use of superposition / entanglement 

➤ Single party: 
 
 
 
 

➤ We know the single-party characterization: States

QUANTUM „FIXED POINTS“

U
A

= Tr1[(A⨂I)U]= Tr1[U’] 
unitary

U’ = =
L M

N O
×

×

Q R
×

×

U’
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➤ What is the fixed point?  
 
 

➤ Ansatz: 
There exists a basis {|bi,j⟩}I×J such that 
∀ i,j ∈ I×J     ∃! x :  U’|x⟩|bi,j⟩ = |x⟩|b’i,j⟩ 

➤ Easy to see: |bi,j⟩ = Q†|i,j⟩ and x=i. 

➤ Description of the evolution Tr1[U’] for a basis {|bi,j⟩}I×J.

QUANTUM „FIXED POINTS“

Computational basis (fixed)

U
A

U’

=
Q R×

×1

2

1

2

|j⟩

|i⟩



➤ Description of the evolution Tr1[U’] for a basis: 
U’|i⟩|bi,j⟩ = |i⟩|b’i,j⟩ 
 
 

➤ For a general input|φ⟩: 
1.) Express in {|bi,j⟩}I×J : |φ⟩ = ∑i,j  βi,j |bi,j⟩ 
2.) Entangle with respective fixed points: ∑i,j  βi,j |i⟩|bi,j⟩ 
3.) Evolve through U’: ∑i,j  βi,j |i⟩|b’i,j⟩ 
4.) Disentangle from respective fixed points: 
         ∑i,j  βi,j |b’i,j⟩ = Tr1[U’]|φ⟩

QUANTUM „FIXED POINTS“ IN SUPERPOSITION
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➤ Circuit picture 
 
 
 
 
 

➤ For a general input|φ⟩: 
1.) Express in {|bi,j⟩}I×J : |φ⟩ = ∑i,j  βi,j |bi,j⟩ 
2.) Entangle with respective fixed points: ∑i,j  βi,j |i⟩|bi,j⟩ 
3.) Evolve through U’: ∑i,j  βi,j |i⟩|b’i,j⟩ 
4.) Disentangle from respective fixed points: 
            ∑i,j  βi,j |b’i,j⟩ = Tr1[U’]|φ⟩

=

QUANTUM „FIXED POINTS“ IN SUPERPOSITION

U
A U’

VV† ●

◯

|φ⟩

|0⟩

V’V’† ●

◯ |0⟩

|φ⟩
U’



➤ Single party: 
 
 
 
 

➤ Two parties: Apply recipe recursively.

QUANTUM „FIXED POINTS“ IN SUPERPOSITION

U2
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QUANTUM „FIXED POINTS“ IN SUPERPOSITION

➤ Recursive application:

U2

A
B

|φ⟩
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➤ Recursive application: 
1.) Contract Alice’s CTC only 
      (Single-party process)

QUANTUM „FIXED POINTS“ IN SUPERPOSITION

U2

A
B

U2’

● U2’
V2V2†

◯|0⟩

V2’V2’† ●

◯ |0⟩

This implements the unitary Tr1[U2’]
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➤ Recursive application: 
1.) Contract Alice’s CTC only 
      (Single-party process)  
2.) Contract Bob’s CTC 
      (Single-party process)

QUANTUM „FIXED POINTS“ IN SUPERPOSITION

U2

A
B

U2’

This implements the unitary Tr1,2[U2’]
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●
● U2’

V2V2†
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V2’V2’† ●

◯ |0⟩
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● W’
◯

W’†

|0⟩
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➤ For more parties: 
Continue recursively, contract one by one. 
 
 
 
 
 
 
 

➤ What do we get?  
A state as input to U2’ which describes all fixed points.

QUANTUM „FIXED POINTS“ IN SUPERPOSITION
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➤ Digest…  
 

➤ Closed form instead of recursive application? 

➤ What properties about the process can we read off the fixed 
points?  
Violations of causal inequalities? 

➤ Simulations / Show computational limitations! 

➤ Describe evolution in CTCs

CHALLENGES
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